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Impulse Control Problems

Based on:
Belak, C., Christensen, S., and Seifried, F. T.: A general verification result for stochastic
impulse control problems, SIAM Journal on Control and Optimization, Vol. 55, No. 2, pp.
627-649, 2017.



Portfolio Optimization with Transaction Costs

Our aim is to solve a portfolio optimization problem which involves both
proportional and constant transaction costs.

Trading strategies are modeled as impulse controls {(τk,∆k)}k∈N, where

• τk denotes the time of the kth transaction (stopping time),

• ∆k denotes the volume of the kth transaction (random variable).
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The General Impulse Control Problem

Consider an Rn-valued system X = XΛ controlled by an impulse control Λ =
{(τk,∆k)}k∈N as follows:

dX(t) = µ(X(t))dt+ σ(X(t)) dW (t), t ∈ [τk, τk+1),

X(τk)= Γ(X(τk−),∆k),

where

• the stopping times τk are increasing and do not accumulate in that

P[limk→∞ τk > T ] = 1,

• the impulses ∆k are chosen from a state-dependent set Z(X(τk−)) ⊂ Rm.

The objective is to find a maximizer of

V(t, x) = sup
Λ∈A(t,x)

E
[
g
(
XΛ
t,x(T )

)]
.
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A Candidate Optimal Control

Define the so-called maximum operatorM via

MV(t, x) , sup
∆∈Z(x)

V
(
t,Γ(x,∆)

)
.

Interpretation:MV highest reward achieveable if you start with an impulse.

Observe that V(t, x) ≥MV(t, x) and

• if V(t, x) >MV(t, x), an impulse in state (t, x) cannot be optimal, and

• if V(t, x) =MV(t, x), an impulse in state (t, x) is expected to be optimal.
• the optimal impulse ∆∗ ∈ Z(x) in state (t, x) should be chosen to be a

maximizer forMV(t, x).

I = {V = MV}

C = {V > MV}
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A Formal Optimal Stopping Problem

By the dynamic programming principle, we expect that

V(t, x) = sup
τ∈Tt

E
[
MV

(
τ,X(τ)

)]

= sup
τ∈Tt

E
[
G
(
τ,X(τ)

)]
,

which is nothing but an optimal stopping problem with reward G ,MV .

The general theory of optimal stopping lets us expect that

• V is equal to the smallest superharmonic function V dominating G, and

• if V is lower semi-continuous and G is upper semi-continuous, then V = V
and the first hi�ing time of the set {V = G} = {V =MV} is optimal.

Remark: Under standard assumptions, M preserves semi-continuity, i.e. G =
MV is upper semi-continuous if V is upper semi-continuous. That is, continuity of
V should su�ice to solve the problem!
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The Verification Theorem

Let H be the set of functions h : [0, T ]× Rn → R with

(H1) h is superharmonic with respect to the uncontrolled state process,

(H2) h dominates the reward, i.e. h ≥Mh,

(H3) h satisfies the terminal condition h(T, ·) ≥ g on Rn.

Define V : [0, T ]× Rn → R to be the pointwise infimum of the members of H.

Verification "Theorem"

If V exists, is continuous, satisfies V(T, ·) = g, and the candidate optimal
control defined in terms of {V = MV} and {V > MV} is admissible,
then (up to integrability) we have

V = V and the candidate optimal control is optimal.

Proof: Relies mainly on classical optimal stopping techniques, i.e. works in quite
general se�ings.
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Continuity of the Value Function

How can we prove the continuity of V?

The smallest superharmonic function turns out to be a viscosity solution of the
dynamic programming equation (DPE)

min
{
−∂tV(t, x)− LV(t, x),V(t, x)−MV(t, x)

}
= 0 on [0, T )× Rn,

V(T, x) = g(x) on Rn,

whereL denotes the infinitesimal generator of the uncontrolled state processX .

More precisely,

• the upper semi-continuous envelope V∗ is a viscosity subsolution and

• the lower semi-continuous envelope V∗ is a viscosity supersolution and

Continuity of V follows if the DPE admits a comparison principle.
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The Comparison Argument

Comparison Principle

The DPE satisfies a comparison principle if the following holds: Let

(1) u : [0, T ]× Rn → R be a viscosity subsolution of the DPE,

(2) v : [0, T ]× Rn → R be a viscosity supersolution of the DPE,

(3) u∗(T, ·) ≤ v∗(T, ·) on Rn,

(4) (possibly some growth conditions at infinity).

Then u∗ ≤ v∗ everywhere.

Thus, since V is a viscosity solution of the DPE, and if we have

V∗(T, ·) ≤ V∗(T, ·) on Rn,

then V∗ ≤ V∗ everywhere, i.e. V is continuous. The la�er inequality can be verified
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Summing Up the Procedure

Summing up the ideas, impulse control problems can be solved as follows:

(1) Show that V∗ is a viscosity supersolution of the DPE. This is typically easy
and can be done by classical viscosity arguments.

(2) Show that V∗ is a viscosity subsolution of the DPE. Can be done using the
stochastic Perron’s method.

(3) Show continuity at time T , i.e. V∗(T, ·) = V∗(T, ·) = g on Rn. Techniques
for this are available and can be expected to work if g is continuous.

(4) Verify that the DPE satisfies a comparison principle. Typically holds if there
exists a strict classical supersolution of the DPE (candidates available).

(5) It follows that V is continuous.

(6) Define a candidate optimal control in terms of {V = MV} and {V >MV}
and verify that the control is admissible. This is problem specific and can
become quite di�icult.

(7) Apply the verification theorem to conclude that V = V and obtain the opti-
mality of the control.

(8) Be happy! You just solved the problem.
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Utility Maximization with Constant Costs

Based on:
Belak, C. and Christensen, S.: Utility maximization in a factor model with constant and
proportional costs, Preprint, available on SSRN, 2017.



The Market Model

We assume that the portfolio X = {X(t)}t∈[0,T ] evolves as

dX1(t) = rX1(t)dt, t ∈ [τk, τk+1),

dX2(t) = µX2(t)dt+ σX2(t)dW (t), t ∈ [τk, τk+1),

X1(τk) = X1(τk−)−∆k − γ|∆k| − C,
X2(τk) = X2(τk−) + ∆k,

where γ ∈ (0, 1) (proportional cost) and C > 0 (constant cost).

A portfolio x ∈ Rn is solvent if it has a positive liquidation value L(x), i.e.,

L(x) , x1 + x2 − γ|x2| − C1{x2 6=0} > 0.

The set S ⊂ R2 of solvent portfolios is called the solvency region.

Remark: The model can be generalized (more than one risky asset, factor processes).
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The Optimization Criterion

Now fix a utility function U : R+ → R such that

• U is strictly increasing, continuous, and concave,

• U is lower bounded; without loss of generality U(0) = 0,

• U satisfies U(l) ≤M(1 + |l|p) for some M > 0, p ∈ (0, 1).

The objective is to maximize utility of terminal wealth, i.e.

V(t, x) = sup
Λ∈A(t,x)

E
[
U
(

L
(
XΛ
t,x(τΛ

S ∧ T )
))]

,

where

• A(t, x) denotes the set of admissible strategies Λ for the initial state (t, x).

• τΛ
S denotes the bankruptcy time corresponding to the strategy Λ, i.e. the first

exit time of XΛ
t,x from the solvency region S .
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Additional Di�iculties in this Model

The general results cannot be applied directly since

• ... the terminal condition is discontinuous since V(T, x) = U(L(x)) and

L(x) , x1 + x2 − γ|x2| − C1{x2 6=0}.

is discontinuous.

• ... the state space is constrained to S instead of all of R2, meaning we face
additional boundary conditions on ∂S .

• ... the set of transactions may be empty, the maximum operatorM does not
preserve semi-continuity everywhere, ...

Except for the first issue, these problems can be dealt with. The discontinuity at time
T is however a deal breaker.

Our resolution: Work with the following liquidation
function instead:

L(x) , x1 + x2 − γ|x2| − C.

In this case the general solution strategy can be adapted to solve the problem...
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Or so we thought...



(Dis-)Continuity of the Value Function



The Discontinuity on the Boundary

Even with the adjusted liquidation function, the value function has a discontinuity
on the boundary ∂S of the state space where x2 = 0. Hence the arguments no
longer work.

More precisely:

• The comparison principle does not apply to V.

• The verification theorem cannot be applied.

The hot fix: Replace the bond with a stock, i.e. add a di�usion component to X1.
This gives continuity on the boundary. But can we do without this assumption?

Observation: The discontinuity occurs on the x1 axis, and the uncontrolled state
process is never able to cross this axis.

Idea: If we can prove continuity of V on each quadrant and on each axis separately,
then the verification theorem still works. But how to get this piecewise continuity?
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The Local Comparison Principle

For a locally bounded function u : [0, T ]× S → R, denote by u∗i and ui∗ the upper
and lower semi-continuous envelopes of u restricted to [0, T ]× Si, i = 1, . . . , 5.

It turn out that the DPE satisfies the following local comparison principle: Let

(1) u : [0, T ]× S → R be a viscosity subsolution of the DPE,

(2) v : [0, T ]× S → R be a viscosity supersolution of the DPE,

(3) u∗i (T, ·) ≤ vi∗(T, ·) on Si, i = 1, . . . , 5,

(4) u∗i ≤ vi∗ on [0, T ]× (∂Si ∩ ∂S), i = 1, . . . , 5,

(5) (growth conditions).

Then u∗i ≤ vi∗ on [0, T ]× Si, i = 1, . . . , 5.

This implies that any viscosity solution with piecewise continuous boundary condi-
tion is continuous if restricted to [0, T ] × Si, i = 1, . . . , 5. The viscosity solution
need not be globally continuous.

Still open: Showing that V satisfies (4). Take it as an assumption for now.
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Conclusion

• Aim: Solve a portfolio optimization problem involving constant costs.

• We devise a new verification procedure based on superharmonic functions
and viscosity solutions to solve general impulse control problems, provided
that the value function is continuous.

• Since the value function of the portfolio optimization problem is not continu-
ous, we use a localization technique to extend the procedure to piecewise
continuous functions.

• In particular, we manage to solve a control problem with discontinuous value
function and we obtain uniqueness of viscosity solutions with a discontin-
uous boundary condition.
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